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I.   INTRODUCTION 

Let A be the class of functions of the form 

𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=2

 

(1) 

Which are analytic and univalent in the open disk 𝑈 = {𝑧: |𝑧| < 1} 

Also denote by T the subclass of A consisting of functions of the form 

𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=2

, 𝑎𝑛 ≥ 0 

(2) 

A function 𝑓 ∈ 𝐴 is said to be in the class of uniformly convex functions of order 𝛼, denoted by 𝑈𝐶𝑉(𝛼) if 

And is said to be in a corresponding subclass of 𝑈𝐶𝑉(𝛼) denoted by 𝑆𝑝(𝛼) if 

ℜ {
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 𝛼} ≥ 𝛽 |

𝑧𝑓′(𝑧)

𝑓(𝑧)
− 1| , 

−1 ≤ 𝛼 ≤ 1 and 𝑧 ∈ 𝑈 The class of uniformly convex and uniformly starlike functions has been studied by Goodman, see 

[3,4] and Ma and Minda [6]. If 𝑓 of the form (1) and 𝑔(𝑧) = 𝑧 + ∑ 𝑏𝑛
∞
𝑛=2 𝑧𝑛 ,are two functions in A, Then the Hadamard 

product of 𝑓 and 𝑔 is denoted by 𝑓 ∗ 𝑔 and is given by 

(𝑓 ∗ 𝑔)(𝑧) = 𝑧 + ∑ 𝑎𝑛

∞

𝑛=2

𝑏𝑛𝑧𝑛 

Definition 1 we consider the following linear operator 

𝐽𝑓(𝑧) = 𝑓(𝑧) ∗ 𝑒𝑥𝑝(𝑧) = 𝑧 + ∑
1

𝑛!

∞

𝑛=2

𝑎𝑛𝑧𝑛 

(3) 
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where, 𝑓(𝑧) ∈A, and has the form (1). 

Now using the operator introduced in (3) we can define the following subclass of analytic function, 𝐽 ∗ 𝑓(𝑧) 

ℜ {
𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 𝛼} ≥ |

𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1| , 𝑧 ∈ 𝑈 

Now let’s write 𝐽𝑇𝑓(𝑧) = 𝐽 ∗ 𝑓(𝑧)⋂𝑇 

The origin of such classes is introduced and studied by various authors including [1], [8], and [9]. 

II.   MAIN RESULTS 

1. Characterization Property 

Theorem 1.  

A function 𝑓 defined by (2) is in the class 𝐽𝑇𝑓(𝑧)if and only if 

∑
1

𝑛!

∞

𝑛=2

⋅
2𝑛 − 1 − 𝛼

1 − 𝛼
|𝑎𝑛| ≤ 1 

Proof. It suffices to show that 

|
𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1| ≤ ℜ {

𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 𝛼} 

and we have 

|
𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1| ≤ ℜ {

𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1} + (1 − 𝛼) 

that is 

|
𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1| − ℜ {

𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1} ≤ 2 |

𝑧(𝐽𝑓(𝑧))′

𝐽𝑓(𝑧)
− 1| ≤

∑ (𝑛 − 1)∞
𝑛=2 1/𝑛! |𝑎𝑛|

1 − ∑ 1/𝑛!∞
𝑛=2 |𝑎𝑛|

 

The above expression is bounded by (1 − 𝛼) and hence the assertion of the result 

Now we want to show that 𝑓 ∈ 𝐽𝑇𝑓(𝑧) satisfies (3) 

if 𝑓 ∈ 𝐽𝑇𝑓(𝑧) then (3) yields 

1 − ∑ 𝑛∞
𝑛=2 /𝑛! 𝑎𝑛𝑧𝑛−1

1 − ∑ 1/𝑛!∞
𝑛=2 𝑎𝑛𝑧𝑛−1

− 𝛼 ≥
1 − ∑ (𝑛 − 1)∞

𝑛=2 1/𝑛! 𝑎𝑛𝑧𝑛−1

1 − ∑ 1/𝑛!∞
𝑛=2 𝑎𝑛𝑧𝑛−1

 

Letting 𝑧 → 1 along the real axis leads to the inequality 

∑(2𝑛 − 1 − 𝛼)

∞

𝑛=2

1/𝑛! 𝑎𝑛 ≤ 1 − 𝛼 

Corollary 1. let a function 𝑓, defined by (2) belongs to the class 𝐽𝑇𝑓(𝑧)then 

𝑎𝑛 ≤
1

𝑛!
⋅

1−𝛼

2𝑛−1−𝛼
, for 𝑛 ≥ 2 

Theorem 2 Let the function 𝑓, defined by (2) be in the class 𝐽𝑇𝑓(𝑧)then 

|𝑧| − |𝑧|2
1

2(3 − 𝛼
≤ |𝐽𝑓(𝑧)| ≤ |𝑧| + |𝑧|2

1

2(3 − 𝛼)
 

1 − |𝑧|
1

(3 − 𝛼)
≤ |(𝐽𝑓(𝑧))′| ≤ 1 + |𝑧|

1

(3 − 𝛼)
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The bounds above are attained for the functions given by 

𝑓(𝑧) = 𝑧 −
1

4(3 − 𝛼)
𝑧2 

Theorem 3. Let a function 𝑓, be defined by (1.2) and 

𝑔(𝑧) = 𝑧 − ∑ 𝑏𝑛

∞

𝑛=2

𝑧𝑛 

be in the class 𝐽𝑇𝑓(𝑧). then the function ℎ, defined by 

ℎ(𝑧) = (1 − 𝛽)𝑓(𝑧) + 𝛽𝑔(𝑧) = 𝑧 − ∑ 𝑐𝑛

∞

𝑛=2

𝑧𝑛 

Where 𝑐𝑛 = (1 − 𝛽)𝑎𝑛 + 𝛽𝑏𝑛,and 0 ≤ 𝛽 ≤ 1,is also in the class 𝐽𝑇𝑓(𝑧) 

Now we define the following functions 𝑓𝑗(𝑧) ,(𝑗 = 1,2,3, . . . . . . 𝑚) 

of the form 

𝑓𝑗(𝑧) = 𝑧 − ∑ 𝑎𝑛,𝑗

∞

𝑛=2

𝑧𝑛 , 𝑎𝑛,𝑗 ≥ 0, 𝑧 ∈ 𝑈 

(4) 

Theorem 4 (closure theorem). Let the functions 𝑓𝑗(𝑧) (𝑗 = 1,2,3, . . . . . . 𝑚) defined by (4), be in the class 

𝐽𝑓𝑗(𝑧)(𝑗 = 1,2,3, . . . . . . 𝑚) respectively. Then the function ℎ(𝑧) defined by 

ℎ(𝑧) = 𝑧 −
1

𝑚
∑ (∑ 𝑎𝑛,𝑗

𝑚

𝑗=1

)

∞

𝑛=2

𝑧𝑛 

is in the class 𝐽𝑓𝜉(𝑧)where 

𝜉 = 𝑀𝑎𝑥
1≤𝑗≤𝑚

{𝛼𝑗}𝑤𝑖𝑡ℎ   0 ≤ 𝛼𝑗 < 1.  

2. Results involving convolution 

Theorem 5. for functions 𝑓𝑗(𝑧) (𝑗 = 1,2) defined by (4) let 𝑓1(𝑧) ∈ 𝐽𝑇𝑓1(𝑧)and 𝑓2(𝑧) ∈ 𝐽𝑇𝑓2(𝑧). then 𝑓1 ∗ 𝑓2 ∈ 𝑇𝑅(𝜂, 𝜆, 𝛾) 

, where 

𝛾 ≤ 1 −
1

(2𝑛 − 1 − 𝛼)(2𝑛 − 1 − 𝛽)1/𝑛! − (1 − 𝛼)(1 − 𝛽)
, 

 

Theorem 6 Let the functions 𝑓𝑗(𝑧), (𝑗 = 1,2) defined by (4) be in the class 𝐽𝑇𝑓(𝑧)Then (𝑓1 ∗ 𝑓2)(𝑧) ∈ 𝐽𝑇_𝜌𝑓(𝑧) 

3. The Integral Transform  

We define the integral transform 

𝑉𝜇(𝑓)(𝑧) = ∫ 𝜇
1

0

(𝑡)
𝑓(𝑡𝑧)

𝑡
𝑑𝑡 

Where 𝜇(𝑡) is a real valued, non-negative weight function normalized so that ∫ 𝜇
1

0
(𝑡)𝑑𝑡 = 1. 

Special case of 𝜇(𝑡) is 𝜇(𝑡) =
(𝑐+1)𝛿

𝜇(𝛿)
𝑡𝑐 (log

1

𝑡
)

𝛿−1

 , 𝑐 > −1, 𝛿 ≥ 0 
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Which gives the Komatu operator. 

Theorem 7 Let 𝑓 ∈ 𝐽𝑇𝑓(𝑧)Then 𝑉𝜇(𝑓) ∈ 𝐽𝑇𝑓(𝑧). 

. 

Theorem 8. (radius of starlikeness) Let 𝑓 ∈ 𝐽𝑇𝑓(𝑧)then 𝑉𝜇(𝑓)is starlike of order 0 ≤ 𝛾 < 1 in |𝑧| ≺ 𝑅1, where 

𝑅1 = 𝑚𝑖𝑛
𝑛

[(
𝑐 + 𝑛

𝑐 + 1
)

𝛿

⋅
1 − 𝛾(2𝑛 − 1 − 𝛼)

(𝑛 − 𝛾)(1 − 𝛼)
.

1

𝑛!
]

1
𝑛−1

 

Theorem 9. 𝑓 ∈ 𝐽𝑇𝑓(𝑧)then 𝑉𝜇(𝑓)is convex of order 0 ≤ 𝛾 < 1,in |𝑧| < 𝑅2,where 

𝑅2 = 𝑚𝑖𝑛
𝑛

[(
𝑐 + 𝑛

𝑐 + 1
)

𝛿 (1 − 𝛾)(2𝑛 − 1 − 𝛼)

𝑛(𝑛 − 𝛾)(1 − 𝛼)
.

1

𝑛!
]

1
𝑛−1

 

III.   CONCLUSION 

By utilizing the Hadamard product, we introduced a new linear operator that involves the analytic functions on the unit disk 

and the exponential function. Consequently, we defined a new subclass of uniformly starlike functions. We investigated the 

characteristics of the new subclass and determined the sufficient conditions for the inclusion results. In addition, we 

expended the finding to involve Hadamard product. Finally, we presented a study on the integral transform and obtained 

various results. 
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